3.1.6 \(\int \cot ^5(d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx\) [6]

3.1.6.1 Optimal result
3.1.6.2 Mathematica [C] (verified)
3.1.6.3 Rubi [F]
3.1.6.4 Maple [B] (warning: unable to verify)
3.1.6.5 Fricas [B] (verification not implemented)
3.1.6.6 Sympy [F]
3.1.6.7 Maxima [F]
3.1.6.8 Giac [F]
3.1.6.9 Mupad [F(-1)]

3.1.6.1 Optimal result

Integrand size = 33, antiderivative size = 976 \[ \int \cot ^5(d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=-\frac {\sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \arctan \left (\frac {b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )-b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}-\frac {b \text {arctanh}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 \sqrt {c} e}+\frac {b \left (b^2-4 a c\right ) \text {arctanh}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{16 c^{5/2} e}-\frac {b \left (7 b^2-12 a c\right ) \left (b^2-4 a c\right ) \text {arctanh}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{256 c^{9/2} e}+\frac {\sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \text {arctanh}\left (\frac {b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )+b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}-\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}-\frac {b (b+2 c \cot (d+e x)) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{8 c^2 e}+\frac {b \left (7 b^2-12 a c\right ) (b+2 c \cot (d+e x)) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{128 c^4 e}+\frac {\left (a+b \cot (d+e x)+c \cot ^2(d+e x)\right )^{3/2}}{3 c e}-\frac {\cot ^2(d+e x) \left (a+b \cot (d+e x)+c \cot ^2(d+e x)\right )^{3/2}}{5 c e}-\frac {\left (35 b^2-32 a c-42 b c \cot (d+e x)\right ) \left (a+b \cot (d+e x)+c \cot ^2(d+e x)\right )^{3/2}}{240 c^3 e} \]

output
1/16*b*(-4*a*c+b^2)*arctanh(1/2*(b+2*c*cot(e*x+d))/c^(1/2)/(a+b*cot(e*x+d) 
+c*cot(e*x+d)^2)^(1/2))/c^(5/2)/e-1/256*b*(-12*a*c+7*b^2)*(-4*a*c+b^2)*arc 
tanh(1/2*(b+2*c*cot(e*x+d))/c^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)) 
/c^(9/2)/e+1/3*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(3/2)/c/e-1/5*cot(e*x+d)^2* 
(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(3/2)/c/e-1/240*(35*b^2-32*a*c-42*b*c*cot( 
e*x+d))*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(3/2)/c^3/e-1/2*b*arctanh(1/2*(b+2 
*c*cot(e*x+d))/c^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2))/e/c^(1/2)-(a 
+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/e-1/8*b*(b+2*c*cot(e*x+d))*(a+b*cot(e* 
x+d)+c*cot(e*x+d)^2)^(1/2)/c^2/e+1/128*b*(-12*a*c+7*b^2)*(b+2*c*cot(e*x+d) 
)*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/c^4/e+1/2*arctanh(1/2*(b^2+b*cot(e 
*x+d)*(a^2-2*a*c+b^2+c^2)^(1/2)+(a-c)*(a-c+(a^2-2*a*c+b^2+c^2)^(1/2)))/(a^ 
2-2*a*c+b^2+c^2)^(1/4)*2^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/(a^2+ 
b^2+c*(c-(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c-(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/ 
2))*(a^2+b^2+c*(c-(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c-(a^2-2*a*c+b^2+c^2)^(1 
/2)))^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/e*2^(1/2)-1/2*arctan(1/2*(b^2+(a-c)* 
(a-c-(a^2-2*a*c+b^2+c^2)^(1/2))-b*cot(e*x+d)*(a^2-2*a*c+b^2+c^2)^(1/2))/(a 
^2-2*a*c+b^2+c^2)^(1/4)*2^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/(a^2 
+b^2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1/2)))^(1 
/2))*(a^2+b^2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^( 
1/2)))^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/e*2^(1/2)
 
3.1.6.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.71 (sec) , antiderivative size = 1214, normalized size of antiderivative = 1.24 \[ \int \cot ^5(d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=-\frac {i \sqrt {a+i b-c} \arctan \left (\frac {i b-2 c+(2 i a-b) \tan (d+e x)}{2 \sqrt {a+i b-c} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right ) \tan (d+e x) \sqrt {\cot ^2(d+e x) \left (c+b \tan (d+e x)+a \tan ^2(d+e x)\right )}}{2 e \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}-\frac {i \sqrt {a-i b-c} \arctan \left (\frac {i b+2 c+(2 i a+b) \tan (d+e x)}{2 \sqrt {a-i b-c} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right ) \tan (d+e x) \sqrt {\cot ^2(d+e x) \left (c+b \tan (d+e x)+a \tan ^2(d+e x)\right )}}{2 e \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}-\frac {\sqrt {a} \text {arctanh}\left (\frac {b+2 a \tan (d+e x)}{2 \sqrt {a} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right ) \tan (d+e x) \sqrt {\cot ^2(d+e x) \left (c+b \tan (d+e x)+a \tan ^2(d+e x)\right )}}{e \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}+\frac {\tan (d+e x) \sqrt {\cot ^2(d+e x) \left (c+b \tan (d+e x)+a \tan ^2(d+e x)\right )} \left (2 \sqrt {a} \text {arctanh}\left (\frac {b+2 a \tan (d+e x)}{2 \sqrt {a} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right )-\frac {b \text {arctanh}\left (\frac {2 c+b \tan (d+e x)}{2 \sqrt {c} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right )}{\sqrt {c}}-2 \cot (d+e x) \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}\right )}{2 e \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}+\frac {\tan (d+e x) \sqrt {\cot ^2(d+e x) \left (c+b \tan (d+e x)+a \tan ^2(d+e x)\right )} \left (\frac {16 \cot ^3(d+e x) \left (c+b \tan (d+e x)+a \tan ^2(d+e x)\right )^{3/2}}{c}+\frac {3 b \left (\frac {\left (b^2-4 a c\right ) \text {arctanh}\left (\frac {2 c+b \tan (d+e x)}{2 \sqrt {c} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right )}{c^{3/2}}-\frac {2 \cot ^2(d+e x) (2 c+b \tan (d+e x)) \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}{c}\right )}{c}\right )}{48 e \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}+\frac {\tan (d+e x) \sqrt {\cot ^2(d+e x) \left (c+b \tan (d+e x)+a \tan ^2(d+e x)\right )} \left (-\frac {\cot ^5(d+e x) \left (c+b \tan (d+e x)+a \tan ^2(d+e x)\right )^{3/2}}{5 c}-\frac {-\frac {7 b \cot ^4(d+e x) \left (c+b \tan (d+e x)+a \tan ^2(d+e x)\right )^{3/2}}{8 c}-\frac {\frac {\left (-35 b^2+32 a c\right ) \cot ^3(d+e x) \left (c+b \tan (d+e x)+a \tan ^2(d+e x)\right )^{3/2}}{12 c}-\frac {\left (-7 a b c+\frac {1}{4} b \left (35 b^2-32 a c\right )\right ) \left (\frac {\left (b^2-4 a c\right ) \text {arctanh}\left (\frac {2 c+b \tan (d+e x)}{2 \sqrt {c} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right )}{8 c^{3/2}}+\frac {\cot ^2(d+e x) (-2 c-b \tan (d+e x)) \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}{4 c}\right )}{2 c}}{4 c}}{5 c}\right )}{e \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}} \]

input
Integrate[Cot[d + e*x]^5*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2],x]
 
output
((-1/2*I)*Sqrt[a + I*b - c]*ArcTan[(I*b - 2*c + ((2*I)*a - b)*Tan[d + e*x] 
)/(2*Sqrt[a + I*b - c]*Sqrt[c + b*Tan[d + e*x] + a*Tan[d + e*x]^2])]*Tan[d 
 + e*x]*Sqrt[Cot[d + e*x]^2*(c + b*Tan[d + e*x] + a*Tan[d + e*x]^2)])/(e*S 
qrt[c + b*Tan[d + e*x] + a*Tan[d + e*x]^2]) - ((I/2)*Sqrt[a - I*b - c]*Arc 
Tan[(I*b + 2*c + ((2*I)*a + b)*Tan[d + e*x])/(2*Sqrt[a - I*b - c]*Sqrt[c + 
 b*Tan[d + e*x] + a*Tan[d + e*x]^2])]*Tan[d + e*x]*Sqrt[Cot[d + e*x]^2*(c 
+ b*Tan[d + e*x] + a*Tan[d + e*x]^2)])/(e*Sqrt[c + b*Tan[d + e*x] + a*Tan[ 
d + e*x]^2]) - (Sqrt[a]*ArcTanh[(b + 2*a*Tan[d + e*x])/(2*Sqrt[a]*Sqrt[c + 
 b*Tan[d + e*x] + a*Tan[d + e*x]^2])]*Tan[d + e*x]*Sqrt[Cot[d + e*x]^2*(c 
+ b*Tan[d + e*x] + a*Tan[d + e*x]^2)])/(e*Sqrt[c + b*Tan[d + e*x] + a*Tan[ 
d + e*x]^2]) + (Tan[d + e*x]*Sqrt[Cot[d + e*x]^2*(c + b*Tan[d + e*x] + a*T 
an[d + e*x]^2)]*(2*Sqrt[a]*ArcTanh[(b + 2*a*Tan[d + e*x])/(2*Sqrt[a]*Sqrt[ 
c + b*Tan[d + e*x] + a*Tan[d + e*x]^2])] - (b*ArcTanh[(2*c + b*Tan[d + e*x 
])/(2*Sqrt[c]*Sqrt[c + b*Tan[d + e*x] + a*Tan[d + e*x]^2])])/Sqrt[c] - 2*C 
ot[d + e*x]*Sqrt[c + b*Tan[d + e*x] + a*Tan[d + e*x]^2]))/(2*e*Sqrt[c + b* 
Tan[d + e*x] + a*Tan[d + e*x]^2]) + (Tan[d + e*x]*Sqrt[Cot[d + e*x]^2*(c + 
 b*Tan[d + e*x] + a*Tan[d + e*x]^2)]*((16*Cot[d + e*x]^3*(c + b*Tan[d + e* 
x] + a*Tan[d + e*x]^2)^(3/2))/c + (3*b*(((b^2 - 4*a*c)*ArcTanh[(2*c + b*Ta 
n[d + e*x])/(2*Sqrt[c]*Sqrt[c + b*Tan[d + e*x] + a*Tan[d + e*x]^2])])/c^(3 
/2) - (2*Cot[d + e*x]^2*(2*c + b*Tan[d + e*x])*Sqrt[c + b*Tan[d + e*x] ...
 
3.1.6.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^5(d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (d+e x)^5 \sqrt {a+b \cot (d+e x)+c \cot (d+e x)^2}dx\)

\(\Big \downarrow \) 4184

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot ^3(d+e x)+\frac {\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)}{\cot ^2(d+e x)+1}-\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a} \cot (d+e x)\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle -\frac {\int \frac {\cot ^5(d+e x) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}{\cot ^2(d+e x)+1}d\cot (d+e x)}{e}\)

input
Int[Cot[d + e*x]^5*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2],x]
 
output
$Aborted
 

3.1.6.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4184
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*( 
f_.))^(n_.) + (c_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] 
 :> Simp[-f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), 
x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[ 
n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 

rule 7239
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; Simpl 
erIntegrandQ[v, u, x]]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.1.6.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 6.86 (sec) , antiderivative size = 17768513, normalized size of antiderivative = 18205.44

\[\text {output too large to display}\]

input
int(cot(e*x+d)^5*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x)
 
output
result too large to display
 
3.1.6.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 6335 vs. \(2 (877) = 1754\).

Time = 3.02 (sec) , antiderivative size = 12721, normalized size of antiderivative = 13.03 \[ \int \cot ^5(d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=\text {Too large to display} \]

input
integrate(cot(e*x+d)^5*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm= 
"fricas")
 
output
Too large to include
 
3.1.6.6 Sympy [F]

\[ \int \cot ^5(d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=\int \sqrt {a + b \cot {\left (d + e x \right )} + c \cot ^{2}{\left (d + e x \right )}} \cot ^{5}{\left (d + e x \right )}\, dx \]

input
integrate(cot(e*x+d)**5*(a+b*cot(e*x+d)+c*cot(e*x+d)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*cot(d + e*x) + c*cot(d + e*x)**2)*cot(d + e*x)**5, x)
 
3.1.6.7 Maxima [F]

\[ \int \cot ^5(d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=\int { \sqrt {c \cot \left (e x + d\right )^{2} + b \cot \left (e x + d\right ) + a} \cot \left (e x + d\right )^{5} \,d x } \]

input
integrate(cot(e*x+d)^5*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm= 
"maxima")
 
output
integrate(sqrt(c*cot(e*x + d)^2 + b*cot(e*x + d) + a)*cot(e*x + d)^5, x)
 
3.1.6.8 Giac [F]

\[ \int \cot ^5(d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=\int { \sqrt {c \cot \left (e x + d\right )^{2} + b \cot \left (e x + d\right ) + a} \cot \left (e x + d\right )^{5} \,d x } \]

input
integrate(cot(e*x+d)^5*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm= 
"giac")
 
output
integrate(sqrt(c*cot(e*x + d)^2 + b*cot(e*x + d) + a)*cot(e*x + d)^5, x)
 
3.1.6.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^5(d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=\text {Hanged} \]

input
int(cot(d + e*x)^5*(a + b*cot(d + e*x) + c*cot(d + e*x)^2)^(1/2),x)
 
output
\text{Hanged}